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Abstract: Error-rate performance is studied for selection combining (SC) with arbitrary number of diversity branch-
es over generalized correlated Weibull fading channels. Using a transformation of cumulative distribution function
of average branch signal-to-noise ratio (SNR), we present the exact error-rate expressions for coherent and non-
coherent modulations in infinite series forms. In particular, we develop asymptotic symbol error rate expressions
with closed-form which are valid at high SNR. Presented numerical examples show that taking the first several
terms of the series based error-rate expression results in improved error-rate estimation compared to the asymp-
totic error-rate. These error-rate expressions which can be evaluated efficiently indicate some significant insights
into the characteristics of SC over generalized correlated Weibull fading channels. The accuracy of the analytical
results is validated by the simulation results.
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1 Introduction

Diversity reception for multi-branch receivers is an ef-
fective approach to combat the multipath fading over
fading channels. Since Weibull distribution manifests
good fit to the radio propagation with experimental re-
sults taken around 900 MHz, this distribution was rec-
ommended by the IEEE Vehicular Technology Com-
mittee for theoretical studies in radio propagation en-
vironments [1].

In order to mitigate the fading effect, the fading
margin for the link budget analysis needs to be esti-
mated, and spatial diversity receptions are employed.
Although a large body of literature has been devoted
to study the error-rate performance of various diver-
sity receptions assuming independent Weibull fading
[2]-[5], however, antennas at a receiver with multi-
branch can be spatially correlated as they are insuf-
ficiently separated in practical wireless radio system-
s [6]. Therefore, the multivariate correlated statis-
tic can be a powerful tool for the accurate perfor-
mance estimation. For Weibull distribution with con-
stant correlation, reference [7] developed the proba-
bility density function (pdf) and the cumulative den-

sity function (CDF) of multivariate Weibull distribu-
tion in terms of single-integral, but these representa-
tions are not applicable for more general correlated
Weibull fading channels. The error probability of M-
ary phase shift keying (M-PSK) for selection combin-
ing (SC) and equal gain combining (EGC) with two
diversity branches in the presence of co-channel in-
terference were investigated over the Weibull fading
channels with constant correlation [8]. The authors in
[9]-[11] also investigated the error-rate performance
for dual-branch weibull distribution with constant cor-
relation. For arbitrarily correlated Weibull distribu-
tion, reference [12] presented the formulations to in-
vestigate the performance for SC and maximum ration
combining (MRC) with finite number of branches, but
multiple integrations were carried out to calculate the
error probability with high computational complexi-
ty. A popular multivariate Weibull model proposed in
[13] can be generated using correlated Gaussian pro-
cesses. Based on this model, the joint pdf, CDF, MGF,
and the product moments were provided for multi-
variate Weibull distribution with constant and expo-
nential correlation. However, the infinite series and
multiple-integral representations of pdf presented in
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[13] have significant complexity for a large number of
branches, and precluded its application for such sys-
tems. In [14], the single-integral representations of
the multivariate pdfs and CDFs for a generalized cor-
relation structure were provided to analyze the outage
performance. Although some auhtors have studied the
BER performance over Weibull fading channels with
independent branches or special correlated branches,
to our best knowledge, for the generalized correlat-
ed Weibull fading channels with arbitrary number of
diversity branches that can unify the aforementioned
models, both the asymptotic and exact error-rate anal-
ysis for SC with closed-form expressions have not
been reported.

The contributions of this paper are as follows.
Firstly, we derive a single-integral pdf expression of
the instantaneous SNR, and obtain the exact closed-
form error-rate expressions for SC with coherent and
modulation modulations. Then, in the regime of high
SNR, closed-form asymptotic error-rate expressions
for SC are developed over the generalized correlated
Weibull fading channels with arbitrary number of di-
versity branches and non-identical fading parameter-
s. Presented numerical results show that taking the
first several terms of the series error-rate expressions
can result in improved error-rate estimation. All these
error-rate expressions can be evaluated efficiently us-
ing common mathematical software without resorting
to the time-consuming Monte Carlo simulations.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the system model and
a brief review on the multivariate Weibull distribution
with generalized correlation. In Section 3, using the
single-integral representations of pdf and CDF of the
Gaussian class Weibull distribution we derive the ex-
act infinite series based error-rate expressions for co-
herent and noncoherent modulations. In Section 4, we
provide the asymptotic error-rate with closed-form ex-
pressions. Numerical and simulation results are pre-
sented in Section 5. Finally, Section 6 concludes the
paper.

2 System and Channel Fading Model

It is assumed that there are L diversity branches expe-
riencing correlated and frequency nonselective fading
at the receiver. After demodulation with a matched
filter, the signal received at kth branch can be written
as

yk = wk x + nk, k = 1, ..., L (1)

where wk is the Weibull complex fading coefficient, x
is the transmitted signal with average energy Es, and
nk is the complex Gaussian noise with variance N0.

The fading coefficients wk’s are correlated according
to a specific correlation model.

Suppose Uk and Vk are, respectively, Gaussian in-
phase random variable (RV) and quadrature phase RV
with mean zero and variance 1/2. Then, let Xk =(
1 − λ2

k

) 1
2 Uk + λkU0 and Yk =

(
1 − λ2

k

) 1
2 Vk + λkV0,

where −1 < λk < 1. It can be proved that Xk and
Yk are two independent Gaussian RVs with mean zero
and variance. Then, the Weibull RV Wk with general-
ized correlation can be written as [14]

Wk =

(
σk

√
X2

k + Y2
k

) 2
βk (2)

where σk represents the power scaling factor. The
positive fading parameter βk models the fading sever-
ity of the kth branch. The corresponding power corre-
lation coefficient of W2

k and W2
i can be derived from

[13, eq. (15)] as

ϱW2
k W2

i
=

(
1 − λ2

kλ
2
i

)mi+mk−1
2F1

(
mk,mi; 1; λ2

kλ
2
i

)
−1√

Γ

(
mk+

2
βk

)
Γ2(mk) − 1

√
Γ

(
mi+

2
βi

)
Γ2(mi)

− 1
(3)

where mk = 1 + 2/βk, mi = 1 + 2/βi, and 2F1 (·, ·; ·; ·)
denotes the generalized hypergeometric function [15,
eq. (9.100)].

When βk = 2, eq. (2) can be expressed as

Wk = σk

√
X2

k + Y2
k which is a Rayleigh RV. In this

case, the correlation coefficient between any two com-
plex Gaussian RVs Wk and Wi for k , i is given by
ρ = λkλi. When βk = 1, eq. (2) can be expressed as an
exponential RV . Therefore, the correlated Rayleigh
(βk = 2) and exponential ( βk = 1) distributions are
two special cases of the correlated Weibull distribu-
tion.

Without loss of generality, we normalize the un-
faded branch SNR such that Es/N0 = 1. Using the
single-integral form pdf of W = [W1,W2, ...,WL] giv-
en by [14, eq. (16)], one can calculate the average
SNR of the kth branch as

γk = E
[
W2

k

]
= σ

4
βk
k Γ

(
1 +

2
βk

)
(4)

where E [·] denotes the expectation operator.

3 Exact Error-rate Analysis

In this section, we develop an exact infinite series
error-rate expression for SC with binary coheren-
t modulation and noncoherent modulation. Moreover,
we discuss the convergence of the error-rate expres-
sion based on an infinite series.
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We assume the average SNR of kth branch is de-
fined as γk = gkγ, where gk is the gain of kth branch

w.r.t. the average SNR γ, and γ =
(∏L

k=1 γ̄k
) 1

L . In SC,
the branch with the highest instantaneous received S-
NR is selected for signal detection and the SNR at the
reciever can be expressed as

γSC , max
k=1,...,L

γk. (5)

Since γSC is the maximum of all the instantaneous S-
NR, the CDF of γSC can be calculated from

FγSC (γ) = Pr
[
|w1|2 ≤ γ, |w2|2≤γ, . . . , |wL|2 ≤γ

]
= FW

(√
γ,
√
γ, . . . ,

√
γ
)
. (6)

where Pr [·] is the probability operation. Substituting
the single-integral CDF of Weibull RVs given by [14,
eq. (17)] into (6), the joint CDF of W can be ex-
pressed in single-integral form as

FγSC (γ) =
∫ ∞

0
e−t

L∏
k=1

{
1 −

Q1


√√

2λ2
k t

1 − λ2
k

,

√√√
2pkγ

βk
2

γ
βk
2


}
dt (7)

where Q1 (·, ·) is the Marcum Q-function of order one,

and pk = g
− βk2
k

(
1 − λ2

k

)−1
Γ
βk
2
(
1 + 2

βk

)
. Using the in-

finite series form of generalized Marcum Q-function
and the generalized Laguerre polynomial shown in
[16], one can rewrite the joint CDF of multivariate
Weibull distribution as

FγS C (γ) =
L∏

k=1

pk

∞∑
i=0

(−1)i
∫ ∞

0
e−(1+Λ)t

∑
j1+···+ jL=i

×
L∏

k=1

L(0)
jk

p jk
k

(
λ2

k t
1−λ2

k

)
Γ ( jk + 2)

dt
(
γ

γ̄

)κ
(8)

where κ = B
2 +

1
2

L∑
k=1
βk jk, and L(α)

i (·) denotes the

generalized Laguerre polynomial given by [22, eq.
(22.3.9)]. We define

Ψi = (−1)i
∫ ∞

0
e−(1+Λ)t

L∏
k=1

L(0)
jk

(
λ2

k t
1−λ2

k

)
Γ (i + 2)

p jk
k dt

= (−1)i
L∏

k=1

p jk
k

Γ ( jk + 2)

j1··· jL∑
l1=0,...lL=0

×
Γ
(
1 +

∑L
k=1 lk

)
(1 + Λ)1+

∑L
k=1 lk

L∏
k=1

(lk + 1) jk−lk

( jk − lk)!lk!

 −λ2
k

1 − λ2
k

lk

(9)

where Λ =
L∑

k=1

λ2
k

1−λ2
k
. Then, the CDF of γSC can be

rewritten as

FγSC (γ) =
L∏

k=1

pk

∞∑
i=0

∑
j1+···+ jL=i

Ψi

(
γ

γ

) B
2 +

1
2

L∑
k=1
βk jk
. (10)

Let B =
∑L

k=1 βk, the corresponding pdf of γSC for SC
can be obtained by differentiating (10) as

fγSC (γ) =
L∏

k=1

pk

∞∑
i=0

∑
j1+···+ jL=i

B
2
+

1
2

L∑
k=1

βk jk


× 1
γ
Ψi

(
γ

γ

) B
2 +

1
2

L∑
k=1
βk jk−1

. (11)

3.1 Error-rate for binary coherent modula-
tion

The conditional error probability for binary coherent
modulations is given by Pe,c(γ) = pQ

(√
qγ

)
, where

p and q can determine the underlying modulation for-
mat, e.g., binary shift keying (BPSK) for p = 1, and
q = 2. Using an alternative expression for the Gaus-
sian Q-function, one can obtain the average error-rate
for BPSK as

Pc
e =

∞∫
0

Q
(√

qγ
)

fγSC (γ) dγ

=

∞∫
0

1
√

2π
e−

t2
2 FγSC

(
t2

q

)
dt. (12)

The infinite series form of error-rate for the SC
can be evaluated by substituting (10) into (12) as

Pc
e =

1
2
√
π

L∏
k=1

pk

∞∑
i=0

∑
j1+···+ jL=i

Ψi

×
(

2
qγ

)δ
Γ


B +

L∑
k=1
βk jk + 1

2

 . (13)

where δ = B
2 +

1
2

L∑
k=1
βk jk.

At asymptotically high-SNR (γ → ∞), the error-
rate given in (13) is dominated by the first term. The
leading coefficient Ψ0 can be simplified as

Ψ0 =
1
Λ + 1

. (14)
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We define a correlation coefficient matrix as

M =


1 λ1λ2 · · · λ1λL

λ1λ2 1 · · ·
...

...
...

. . .
...

λ1λL · · · · · · 1

 , (15)

and one can obtain the asymptotic error-rate by apply-
ing (14) as

Pc−a
e ≈

2
B
2 −1Γ

(
B+1

2

)
√
πq

B
2∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

 . (16)

where ∆ =
(
1 +

∑L
k=1

λ2
k

1−λ2
k

) L∏
k=1

(
1 − λ2

k

)
represents the

determinant of M.

3.2 Error-rate for binary noncoherent mod-
ulation

For binary noncoherent modulations, the conditional
error-rate is defined as Pe,nc (γ) = p exp(−qγ) [19],
where p and q can also denotes the noncoherent mod-
ulation form. For instance, p = q = 1/2 for bi-
nary noncoherent frequency shift keying (BNCFSK),
p = 1/2 and q = 1 for binary differential phase shift
keying (BDPSK).

Substituting (10) into Pe,nc (γ), one can obtain the
infinite series form error-rate expression for binary
noncoherent modulations as

Pnc
e =

1
2

L∏
k=1

pk

∞∑
i=0

∑
j1+···+ jL=i

ΨiΓ (δ + 1)

(qγ)δ
(17)

Similarly, as γ → ∞ the error-rate of coherent modu-
lations can be approximated to

Pnc−a
e ≈

Γ
(

B
2 + 1

)
2q

B
2∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

. (18)

3.3 Convergence analysis

We now consider the convergence of error-rate in (10)
for a sufficiently large value of γ. The single-integral
form of coefficient Ψi is expressed as

Ψi = (−1)i
∫ ∞

0
exp (− (Λ + 1) t)

×
∑

j1+···+ jL=i

L∏
k=1

L(0)
jk

(
λ2

k t
1−λ2

k

)
Γ(2 + jk)

p jk
k dt. (19)

Using the inequality
∣∣∣∣∣L(0)

jk

(
λ2

k t
1−λ2

k

)∣∣∣∣∣ ≤ exp
(
λ2

k t
2(1−λ2

k)

)
[22,

eq. (22.14.13)], one obtains an upper bound of Ψi as

|Ψi| ≤
2
Λ + 2

∑
j1+...+ jL=i

L∏
k=1

p jk
k

Γ( jk + 2)

≤ 2
Λ + 2

∑
j1+...+ jL=i

L∏
k=1

p jk
k

Γ( jk + 1)

=
2
Λ + 2

(∑L
k=1 pk

)i

Γ(i + 1)
. (20)

We can infer from (13) that the convergence re-
gion for error-rate depends on γ. However, finding
the region of convergence of the error-rate directly
from (13) is complicated because of the existence of
Ψi with in the nested summations. For the sake of sim-
plicity, we can find a subset of convergence regions
by using the upper bound of Ψi. It is assumed that
β1 6 · · · 6 βL. Then, an upper bound of error-rate in
(13) for coherent modulations can be written as

Pc−u
e 6

1
√
π (Λ + 2)

(
2

qγ

) βL
2 L L∏

k=1

pk

×
∑∞

i=0

Γ
(
βLL+βLi+1

2

)
Γ(i + 1)

(
2

qγ

) βLi
2

ηi (21)

where η =
∑L

k=1 pk, and the infinite series based error-

rate expression converges when
(

2
qγ

) βL
2 η < 1.

In the same manner, the upper bound of error-rate
in (17) for noncoherent modulations can be obtained
as

Pnc−u
e 6

1
√
π (Λ + 2)

(
2

qγ

) βL
2 L L∏

k=1

pk

×
∑∞

i=0

Γ
(
βLL+βLi+1

2

)
Γ(i + 1)

(
1

qγ

) βLi
2

ηi (22)

and (22) converges when
(

1
qγ

) βL
2 η < 1.

We can conclude that the requirement
(

2
qγ

) βL
2 η <

1 or
(

1
qγ

) βL
2 η < 1 is satisfied provided that γ is suf-

ficiently high. For instance, for branches experienc-
ing equally correlated Rayleigh fading, equal aver-
age branch SNR, and BPSK coherent modulation,
the convergence is achieved when γ > L

1−√ϱ , where

ϱ = λ4 denotes the corresponding correlation coef-
ficient between the Weibull RVs in (3). We can al-
so infer that the minimum required γ to guarantee the

WSEAS TRANSACTIONS on COMMUNICATIONS Qing Wang, Ju Liu

E-ISSN: 2224-2864 21 Volume 15, 2016



convergence of error-rate expressions will increase as
the number of branches and correlation coefficient in-
crease which is verified by numerical results. Finally,
when the value of fading parameter β increases, the in-
finite series expression in (13) will converge at a high-
er value of γ. This fact will be verified by numerical
results in Section 5.

4 Asymptotic Error Rate Analysis

To the best of our knowledge, the asymptotic error
probability for different diversity receptions over gen-
eralized correlated Weibull fading channels has not
been presented in the literature. In what follows, we
investigate the asymptotic symbol error rate (SER) for
SC in the high SNR regime.

Let γ be the instantaneous SNR at the receiver.
The characteristics of the pdf of γ near the origin
determine the error rate performance in the regime
of high SNR [17]-[20]. As the exponential func-
tion and the modified Bessel function of the first
kind are included in the single-integral pdf of W =

[W1,W2, ...,WL] given by [14, eq. (16)], using the
first-order Taylor series expansion of the exponential
function near the origin, i.e., lim

x→0
exp (x) = 1 + o (1),

where o(·) denotes an infinitely small quantity, and
the series expansion of the zeroth order modified
Bessel function of the first kind near the origin, i.e.,
lim
x→0

I0 (x) = 1 + o (1), one can derive the joint pdf of

W as

fW (w1, ..., wL) =
1
∆

L∏
k=1

βk

σ2
k

{
w
βk−1
k + o

(
w
βk−1
k

)}
. (23)

From (23), we conclude that in the regime of high S-
NR, the the joint pdf of W for correlated branches can
be expressed by scaling the pdf of W for independent
branches with a factor ∆.

For the Weibull CDF, we utilize the series expan-
sion of the first order Marcum Q-function [21, eq. (8)]
included in the single-integral CDF of W given by
[14, eq. (16)] near the origin and derive an approx-
imate Weibull CDF of W near the origin as

FW (w1, ..., wL) =
1

∆
L∏

k=1
σ2

k

L∏
k=1

{
w
βk
k + o

(
w
βk
k

)}

=
1
∆

L∏
k=1

gk (wk) (24)

where gk (wk) =
(
w
βk
k + o

(
w
βk
k

))
/σ2

k . We observe
that the approximate CDF in (24) has a product for-
m and it resembles the joint CDF of independent RVs.

Thus, we may infer that the asymptotic error probabil-
ity over the correlated Weibull channels at high SNR
tends to have similar behaviour as that of the indepen-
dent Weibull channels.

As the characteristics of the pdf of γ near the o-
rigin can determine the error probability when the av-
erage branch SNR approaches to infinity, the pdf of γ
is calculated as f (γ) = αγt + o

(
γt), where α and t are

the shape parameters related to the coding gain and di-
versity gain. The corresponding asymptotic SER for
coherent modulation and noncoherent modulation are
given by [18]

Pasym
e−c =

2tαΓ
(
t + 3

2

)
p

√
π (t + 1) qt+1

+ o
(
γt+1

)
(25)

and

Pasym
e−nc =

αΓ (t + 1) p
qt+1 + o

(
γt+1

)
, (26)

respectively. Therefore, it is straightforward to es-
timate the asymptotic SER for different modulation
once the values of shape parameters α and t are
known.

Substituting (24) and (4) into (6), one obtains the
first-order approximation of the CDF of γSC as

FγSC (γ) =
1
∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

k

γ B
2 +o

(
γ

B
2
)

(27)

where the pdf of γSC at high SNR can be expressed by
taking a derivative with respect to (27) as

fγS C = αγ
t + o

(
γt

)
(28)

where

α =
B

2∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

k

 (29)

and

t =
∑L

k=1 βk

2
− 1. (30)

Therefore, substituting (29) and (30) to (25), one
obtains the asymptotic SER with closed-form expres-
sion for coherent modulations as

Pasym
e−c =

2
B
2 −1Γ

(
B+1

2

)
p

√
πq

B
2∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

k

. (31)
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Figure 1: Exact error-rate with truncation (N=30) and
asymptotic error-rate for coherent BPSK with triple-
branch SC over generalized correlated Weibull fading
channels ([λ1, λ2, λ3] = [0.6, 0.4, 0.9]).

Simliarly, the asymptotic SER for coherent modula-
tions is written in closed-form as

Pasym
e−nc =

Γ
(

B
2 + 1

)
p

q
B
2∆

L∏
k=1

Γ
βk
2
(
1 + 2

βk

)
γ
βk
2

. (32)

We can observe that (31) and (32) match the ap-
proximate error rate result in (16) for p = 1 and (18)
for p = 1/2, respectively. Besides, it is found that
the asymptotic error-rate can be expressed by scaling
the error probability over independent branches with
a factor ∆.

5 Numerical Results

In this section, using the analytical expressions de-
veloped above, we present selected numerical results
on bit-error rate (BER) performance. For simplicity,
we assume that each branch has identical average S-
NR with equal fading parameter. For the generalized
correlated Weibull fading channels, let [λ1, λ2, λ3] =
[0.6, 0.4, 0.9] denote the correlation parameters for
triple diversity branches.

We have discussed in Section 3 that the infinite
series based error-rate does not converge over the en-
tire SNR region, but it is accurate enough with large
SNR values, and is meaningless with small SNR val-
ues. This is confirmed by the error probability curves
shown in Figures 1 and 2 for coherent BPSK mod-
ulation and noncoherent BDPSK modulation with d-
ifferent values of fading parameter (β = 1.5, 2.0 and
4.0), respectively. From the two figures, we observe
that the infinite series based exact error-rate evaluated
with N = 30 terms match the simulated error-rate at

high SNR. We further observe that for β = 1.5, 3.0 and
4.0, the series error-rate expression for BPSK with co-
herent modulation starts to converge at average branch
SNR values of 10 dB, 11 dB and 13 dB, respectively,
which are in agreement with the convergence require-

ment,
(

2
qγ

) βL
2 η < 1. Furthermore, as the fading param-

eter β increases, the asymptotic BERs tend to agree
with the exact analysis at a lower value of γ.
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Figure 2: Exact error-rate with truncation (N=30) and
asymptotic error-rate for noncoherent BDPSK with
triple-branch SC over generalized correlated Weibull
fading channels ([λ1, λ2, λ3] = [0.6, 0.4, 0.9]).
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Figure 3: Approximate and simulated BERs of co-
herent BPSK with triple-branch SC over generalized
correlated Weibull fading channels ([λ1, λ2, λ3] =
[0.6, 0.4, 0.9]) when β = 4.0.

The error-rate expression for SC can achieve high
accuracy by adding a few extra terms in series ex-
pression at the convergence region in terms of average
branch SNR, which is shown in Figure 3. It can been
seen from Figure 3 that as the number of terms in se-
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ries error-rate expression increases, error-rate perfor-
mance converges at a lower average branch SNR. For
example, the error-rate curve with N = 0 begins to
agree with the simulation result at γ = 18 dB, while
the error-rate curves with N = 1 and N = 2 begin to
agree with their simulated counterparts at 16 dB and
14 dB, respectively. Therefore, using more terms in
the series based error-rate expression one can extend
the SNR region in which the developed error-rate ex-
pression converges.
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Figure 4: Truncation error rate for coherent modu-
lations using different number of terms of the infi-
nite series error-rate expression of SC over general-
ized correlated Weibull fading channels ([λ1, λ2, λ3] =
[0.6, 0.4, 0.9]).

Figure 4 plots the relative truncation error rate of
series based error-rate expression of SC versus aver-
age branch SNR for various values of fading param-
eter β. As expected, the truncation error tends to di-
minish as average branch SNR increases. Let N be
the number of terms used in the series error-rate ex-
pression. For a given value of N, the truncation error
decreases as the value of β increases. One can also
predict the accuracy of truncation error using Figure 4.
For instance, to guarantee a truncation error less than
1%, it requires N = 0 at 36 dB, and N = 5 at 15.2
dB. Although the estimated error-rate is more accu-
rate if more terms are used in evaluating the error-rate
expression, the computational complexity will also in-
crease.

Without loss of generality, we consider a corre-
lation model with equal average branch SNRs and
β1 = · · · = βL = 1.5 in the multivariate Weibull fad-
ing channels. The bit-error probability versus SNR is
plotted in Figure 5 for dual-branch and four-branch
SC with uncorrelated and correlated cases (ϱ = 0.13).
It is observed that the correlative case, as expected,
degrades the error-rate performance. Nevertheless,
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Figure 5: The error-rate against SNR in the case of
L = 2 and L = 4 with uncorrelated and correlated
(ϱ = 0.13) diversity branches for MRC when β = 1.5.

the error-rate difference for coherent modulation and
noncoherent modulation between the the correlated
branches and uncorrelated branches tends to be larger
as the number of branches increases under the same
condition.

In order to study the power correlation effect on
diversity reception over correlated fading channels,
we compare SC with MRC and EGC in terms of error-
rate. Following the method of changing the CDF
of γS C into infinite series form in Section 3, we can
rewrite the joint pdf of W as

fW (w1, ..., wL) =
L∏

k=1

βk

Ω2
k

∞∑
i=0

Γ (1 + i)
(1 + Λ)1+i

∑
j1+··· jL=i

gW (33)

where

gW =

L∏
k=1

σ
2 jk
k λ

2 jk
k

Γ2 ( jk + 1)Ω4 jk
k

w
βk jk+βk−1
k exp

−wβk
k

Ω2
k

 .
Since the MGF of γMRC and the MGF of wEGC for

EGC are defined as

MγMRC (s) =
∫ ∞

0
· · ·

∫ ∞

0︸          ︷︷          ︸
L− f old

exp
(
−s

∑L

k=1
w2

k

)

× fW (w1, . . . , wL) dw1...dwL, (34)

and

MwEGC (s) =
∫ ∞

0
· · ·

∫ ∞

0︸          ︷︷          ︸
L− f old

exp
(

s
√

L

∑L

k=1
wk

)

× fW (w1, . . . , wL) dw1...dwL, (35)
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Figure 6: Exact error-rate for diversity receptions ver-
sus power correlation parameter with triple branches
when β = 2.0, and γ = 15 dB.

resectively, averaging over the pdf of W given by (33),
we can obtain MγMRC (s) and MwEGC (s) which can be
used to eveluate the error-rate performance for MRC
and EGC. It is assumed that the branches are equally
correlated with power correlation coefficient ϱ defined
in (3), and the fading parameter β = 2.0. Figure 6
indicates that the power correlation parameter affects
the error-rate performance of different diversity recep-
tions for a given value of SNR. Clearly, Fig. 6 shows
that error-rate increases as ϱ increases, and MRC out-
performs EGC and SC in terms of error-rate perfor-
mance over the entire region of power correlation co-
efficient. It is also important to point out that the error-
rate performance of SC with coherent or noncoherent
modulation is more sensitive to the value of ϱ than that
of MRC and EGC, especially when the value of ϱ is
high.

6 Conclusion

We studied the error probability of SC over general-
ized correlated Weibull fading channels with arbitrary
number of diversity branches. We derived an exact in-
finite series based error-rate expressions for SC with
coherent and noncoherent modulations. Presented nu-
merical examples showed that taking the first sever-
al terms of the series error-rate expression results in
improved error-rate estimation. We also developed
asymptotic error probability in terms of closed-form
for SC. These error-rate expressions can be used to es-
timate error-rate readily without resorting to the time-
consuming Monte Carlo simulations.

Acknowledgements: The research was supported by
the Research Fund for the Doctoral Program of High-
er Education (20130131110029), the Open Research

Fund of State Key Laboratory of Integrated Services
Networks (ISN14-03), the China Postdoctoral Science
Foundation (2014M560553), and the Special Fund-
s for Postdoctoral Innovative Projects of Shandong
Province (201401013).

References:

[1] N. S. Adawi, H. L. Bertoni, J. R. Child, W. A.
Daniel, J. E. Dettra, R. P. Eckert, E. H. Flath
Jr., and R. T. Forrest, “Coverage prediction for
mobile radio systems operating in the 800/900
MHz frequency range,” IEEE Trans. Veh. Tech-
nol., vol. 37, no. 1, Feb. 1988, pp. 3–72.

[2] M. H. Ismail and M. M. Matalgah, “Exac-
t and approximate error-rate analysis of BPSK
in Weibull fading with cochannel interference,”
IET. Commun., vol. 1, no. 2, Apr. 2007, pp. 203–
208.

[3] A. M. Magableh and M. M. Matalgah, “Error
probability performance and ergodic capacity of
l-branch switched and examine combining in
weibull fading channels,” IET. Commun., vol. 5,
no. 9, Jul. 2011, pp. 1173–1181.

[4] B. S. Bithas, G. K. Karagiannidis, N. C. Sagias,
P. T. Mathiopoulos, S. A. Kotsopoulos, and G.
E. Corazza, “Performance analysis of a class of
GSC receivers over nonidentical Weibull fading
channels,” IEEE Trans. Veh. Technol, vol. 54,
no. 6, Oct. 2006, pp. 1963–1970.

[5] P. R. Sahu and A. K. Chaturvedi, “Performance
analysis of predetection EGC receiver in Weibull
fading channel,” Electron. Lett., vol. 41, no. 2,
Jan. 2005, pp. 47–48.

[6] S. Liu, X. Song, J. Cheng, and N. C. Beaulieu.
“Asymptotic analysis of multi-branch EGC and
SC over equally correlated Rician channels,”
Wireless Communications and Mobile Comput-
ing, vol. 15, no. 5, May 2015, pp. 812–822.

[7] K. T. Hemachandra and N. C. Beaulieu, “New
representations for the Gaussian class multivari-
ate Weibull distribution with constant correlation
and applications,” IEEE Trans. Commun., vol.
59, no. 10, Oct. 2011, pp. 2648–2653.

[8] M. H. Ismail and M. M. Matalgah, “Bit error
rate analysis of diversity M-phase-shift keying
receivers in Weibull fading with cochannel inter-
ference,” IET Commun., vol. 4, no. 1, Jan. 2010,
pp. 13–25.

[9] N. C. Sagias, G. K. Karagiannidis, D. A. Zogas,
P. T. Mathiopoulos, and G. S. Tombras, “Per-
formance analysis of dual selection diversity in

WSEAS TRANSACTIONS on COMMUNICATIONS Qing Wang, Ju Liu

E-ISSN: 2224-2864 25 Volume 15, 2016



correlated Weibull fading channels,” IEEE Tran-
s. Commu., vol. 52, no. 7, Jul. 2004, pp. 1063–
1067.

[10] H. Xiao, Z. Nie, and S. Yang, “Channel capaci-
ty and digital modulation schemes in correlated
Weibull fading channels with nonidentical statis-
tics,” J. of Syst. Eng. and Electron., vol. 18, no.
2, Jul. 2004, pp. 205–209.
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